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Abstract
We have analysed the complex dielectric-function spectra ε(E) = ε1(E) +
iε2(E) of cubic (c-)ZnS in the full spectral range (E = 0–20 eV) using a
classical harmonic oscillator and a simplified interband transition model. The
experimental ε(E) spectra reveal the reststrahlen band, distinct critical-point
structures and cation d-band excitations in the spectra. The critical points are
assigned to specific points in the Brillouin zone with the aid of the band-structure
calculation. They are E0 doublet at ∼3.8 eV; E1 at ∼6.4 eV; E2 at ∼7.0 eV;
E2 + δ at ∼7.4 eV; E ′

0 at ∼7.9 eV and E ′
1 at ∼9.4 eV. Excellent agreement

is also achieved between the modelled and experimental ε(E) spectra over the
entire range of photon energies. The sum rules are used to extract more detailed
information. The high-frequency and static dielectric constants of c-ZnS are
determined to be ε∞ = 5.1 and εs = 8.0, respectively. Dielectric-related
optical constants, such as the complex refractive index, absorption coefficient
and normal-incidence reflectivity, of c-ZnS are also presented.

1. Introduction

Zinc sulfide (ZnS) is the prototype II–VI semiconductor. Its cubic form (c-ZnS), which occurs
naturally as a mineral, has given the name ‘zincblende’ to the crystal structure. The c-ZnS
crystal is the primary candidate for ultraviolet optical devices as a consequence of its large
bandgap energy, ∼3.8 eV at room temperature. Knowledge of the optical constants, such as
the refractive indices and absorption coefficients, of semiconductors is especially important
in the design and analysis of such optical devices. It is also of scientific interest to obtain the
analytical expression for the optical response of semiconductors.

A number of models have been proposed in the literature to describe the optical response
of semiconductors [1–8]. However, most of these models have been developed to describe the
optical response only in a limited spectral region. In the long-wavelength limit, we observe
a lattice absorption band, named the reststrahlen band, in heteropolar semiconductors [9].
Above the interband transition region, further weak structure is observed due to the onset of
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Figure 1. (a) Electronic energy-band structure and (b) DOS of c-ZnS as calculated by the EPM.
The vertical arrows in (a) indicate the locations of several interband transitions in c-ZnS.

real transitions from atomic d-electron levels and/or plasma oscillations as collective excitations
by the valence electrons [10].

In this paper we analyse the complex dielectric function ε(E) = ε1(E) + iε2(E) of c-ZnS
in the full photon-energyrange from 0 to 20 eV. The experimentalε(E) data for c-ZnS are taken
from tabulation in [11] (T = 300 K). The reststrahlen region (E < 0.1 eV) is analysed on
the basis of a classical harmonic oscillator model and those above ∼0.1 eV are modelled
by a simplified model of the interband transitions, namely, the model dielectric function
(MDF) [1, 12]. The MDF includes the E0/(E0 + �0), E1, E2, E2 + δ, E ′

0 and E ′
1 gaps as

the main dispersion mechanisms. These gaps are assigned to specific points in the Brillouin
zone by the aid of the band-structure calculation using an empirical pseudopotential method
(EPM). The various optical sum rules provide a means of relating different physical properties
without model fits to optical spectra [13]. Here we use the ‘static-limit’ sum rules to extract
more detailed information on a zinc chalcogenide family, including c-ZnS.

2. Electronic energy-band structure of c-ZnS

We show in figure 1 the electronic energy-band structure and density-of-states (DOS) spectrum
N(E) for c-ZnS as calculated using the EPM. The spin–orbit interaction is not taken into
account in the calculation. The vertical arrows in figure 1 indicate the locations of several
interband transitions in c-ZnS.

We regarded the Zn 3d orbitals simply as core states. Note, however, that the cation d
electrons play a significant role in II–VI and III–V semiconductors [14–17]. We, therefore,
indicate the position of the Zn 3d band in figure 1. It is composed of five Zn 3d states. Due to
the p–d hybridization with the anion p bands, the Zn 3d band is very narrow and exhibits very
weak dispersion. The widths in energy of the Zn 3d band at the � point reported in [16] are
0.46 eV for c-ZnS, 0.37 eV for ZnSe and 0.21 eV for ZnTe, respectively.

In figure 1, the valence band consists of two subbands separated by ∼10 eV. The top anion
p and bottom cation s valence shells have widths of about 4 and 1 eV, respectively. The spin–
orbit interaction splits the �15 valence band into �8 and �7 (double-group notation, splitting
energy �0). The corresponding transitions at � are, respectively, labelled E0 (�8 (�15) →
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�6 (�1)) and E0 + �0 (�7 (�15) → �6 (�1)). The �0 value in c-ZnS is known to be very
small, ∼70 meV [18, 19].

The spin–orbit interaction splits the L3 valence band into L4,5 and L6 (splitting energy �1).
The corresponding transitions at or near L are, respectively, labelled E1 (L4,5 (L3) → L6 (L1))

and E1 + �1 (L6 (L3) → L6 (L1)). A value of �1 = 50 meV has been obtained
theoretically [20], but at present no experimental data are available for c-ZnS. In the framework
of the k · p method, the spin–orbit splitting �0 at the � point is approximately one and a half
times �1 at the L point, namely, �0/�1 ∼ 3/2 [21]. We found that many II–VI and III–V
semiconductors obey the �0/�1 ∼ 3/2 rule very well. It is, thus, reasonable to suppose
that the �1 value in c-ZnS is very small (a value of �1 ∼ 47 meV is estimated from the
�0/�1 ∼ 3/2 rule).

The E2 transitions in cubic semiconductors are expected to occur along the 〈110〉 (�)
direction or near X (X7 (X5) → X6 (X1)). The E ′

1 transitions may occur at the L point
(L4,5 (L3) → L6 (L3)). The higher transitions at or near � are labelled E ′

0 (�8 (�15) →
�7 (�15)).

The imaginary part of the dielectric function ε2(E) can be calculated from the electronic
energy-band structure using the relation [22]

ε2(E) = 2e2h̄4

πm2 E2

∑
c,v

∫ ∣∣∣∣〈k, c| d

dx
|k, v〉

∣∣∣∣
2

δ(Ecv(k) − E) dk (1)

where |k, c〉 and |k, v〉 represent the periodic parts of the wavefunctions of the conduction and
valence bands, respectively, and Ecv(k) is the energy difference between the conduction and
valence bands. The integration is performed over the entire Brillouin zone with taking into
account the k-dependent momentum-matrix element [23].

The solid curve in figure 2(a) shows the calculated ε2(E) spectrum of c-ZnS from
equation (1). Individual contributions to ε2(E) of the interband transitions in the specific
parts of the Brillouin zone, �, L and X, are also shown in figure 2(a). The experimental ε2(E)

spectrum for c-ZnS measured at T = 300 K is plotted in figure 2(b) by solid circles [11].
The calculated ε2(E) spectrum in figure 2(a) shows the main features of the measured

curve; however, it does not show a quantitatively good fit. This is because we have not included
a phenomenological relaxation time, i/τ , in the ε2(E) calculation to account for the lifetime-
broadening effects. By choosing a finite τ value, it is principally possible to reproduce the
strength (and width) of the experimentally measured ε2 peaks. The excitonic effect should
also be included to achieve better quantitative agreement with experiment.

The onset of optical absorption in the calculated ε2(E) spectrum of figure 2(a) occurs at
∼3.5 eV. It is clear that the most important contributions to the E1 and E ′

1 peaks are due to the
transitions at L. The nature of the E2 structure is complicated, since it does not correspond to
a single, well defined CP. It can be attributed to an accidental coincidence of saddle points at
or near X and L in the Brillouin zone. The band-structure calculation also suggests the E2 + δ

CP at or near X (X7 (X5) → X7 (X3)). It should be noted that the splitting energy δ at the X
point is zero in homopolar semiconductors (Si, Ge etc).

3. Model dielectric function

The relation between the energy-band structure and the imaginary part ε2(E) of the complex
dielectric function in crystalline semiconductors can be given by [24]

ε2(E) = 4e2h̄2

πµ2 E2

∫
S

dk |Pcv(k)|2δ[Ec(k f ) − Ev(ki ) − E(k0)], (2)
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Figure 2. (a) ε2(E) spectrum of c-ZnS obtained from equation (1). Individual contributions to
ε2(E) of the interband transitions in the specific parts of the Brillouin zone, �, L and X, are also
shown. (b) ε2(E) spectrum of c-ZnS at T = 300 K taken from tabulation in [11]. The vertical
arrows in (a) and (b) indicate the positions of several interband transitions and d-band excitations
in c-ZnS.

where µ is the combined-DOS mass, Pcv(k) is the momentum-matrix element between the
valence- Ev(k) and the conduction-band states Ec(k) and k = k f − ki − k0. Since the
wavevector of the radiation k0 is usually very small compared to the dimension of the first
Brillouin zone, we neglect it and obtain k ≈ k f − ki . The integration in equation (2) goes
over the equal-energy-difference surface in k space defined by Ec(k f ) − Ev(ki) = E(k0).

In the MDF, equation (2) can be simply written as

ε2(E) =
M∑

s=1

4e2h̄2

π(µs)2 E2
|Ps

cv(k)|2 J s
cv(E), (3)

where J s
cv(E) is the joint-DOS function of the sth interband CP. As can be understood from

equation (3), the joint-DOS function mainly determines the interband contribution to ε2(E)

and thus to the optical constants of solids. Analytical behaviours of J s
cv(E) at various types of

CP have been well defined [24].
The Kramers–Kronig (KK) relations assure that ε1(E) can be calculated at each photon

energy if ε2(E) is known explicitly over the entire photon-energy range, and vice versa. These
relations are given by

ε1(E) = 1 +
2

π

∫ ∞

0

E ′ε2(E ′)
E ′2 − E2

dE ′, (4a)

ε2(E) = −2E

π

∫ ∞

0

ε1(E ′)
E ′2 − E2

dE ′. (4b)

In the following, we summarize the MDFs for CP of each energy gap [12]. Combining all
these contributions, one can obtain the spectral dependence of ε(E) of the material in the entire
range of photon energies.
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The E0 and E0 + �0 gaps are of the three-dimensional (3D) M0 CPs and occur in c-ZnS
at ∼3.8 eV. The contributions of these gaps to ε(E) are given by

ε(E) = AE−3/2
0

[
f (χ0) +

1

2

(
E0

E0 + �0

)3/2

f (χso)

]
, (5)

with

f (χ0) = χ−2
0 [2 − (1 + χ0)

1/2 − (1 − χ0)
1/2], (6a)

f (χso) = χ−2
so [2 − (1 + χso)

1/2 − (1 − χso)
1/2], (6b)

χ0 = E + i�

E0
, (7a)

χso = E + i�

E0 + �0
. (7b)

In equations (5)–(7), A and � are, respectively, the strength and broadening parameters of the
E0 and E0 + �0 CPs.

The discrete series of excitons at the E0 and E0 + �0 edges can be simply written as

ε(E) =
∞∑

n=1

A0x

n3

[
1

[E0 − (G0/n2)]2 − E2 − i2E�

+
1

2

1

[E0 + �0 − (G0/n2)]2 − E2 − i2E�

]
, (8)

where A0x is the exciton strength parameter and G0 is the 3D-exciton Rydberg energy.
The E1 and E1 + �1 CPs are assumed to be of the two-dimensional (2D) M0 type and

occur in c-ZnS at ∼6.5 eV. The contributions to ε(E) of these CPs are given by

ε(E) = −B1χ
−2
1d ln(1 − χ2

1d) − B2χ
−2
1sd ln(1 − χ2

1sd), (9)

ε(E) =
∞∑

n=1

1

(2n − 1)3

[
B1x

(E1 − [4G1/(2n − 1)2])2 − E2 − i2E�

+
B2x

(E1 + �1 − [4G1/(2n − 1)2])2 − E2 − i2E�

]
, (10)

with

χ1d = E + i�

E1
, (11a)

χ1sd = E + i�

E1 + �1
, (11b)

where Bi (Bix) and � are the one-electron (2D-exciton) strength parameter and broadening
energy of the E1 and E1 + �1 transitions, respectively, and G1 is the 2D-exciton Rydberg
energy. Because of the small �1 value of c-ZnS, we neglect the contribution to ε(E) of the
E1 + �1 transitions.

The E2 transitions in c-ZnS occur at ∼7 eV and are characterized by a damped harmonic
oscillator (DHO). The contribution to ε(E) of this CP is given by

ε(E) = C

(1 − χ2
2 ) − iχ2γ

, (12)

with

χ2 = E

E2
, (13)
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where C and γ are the nondimensional strength and broadening parameters of the DHO,
respectively. The higher-lying CPs, such as E2 + δ, E ′

0 and E ′
1, and d-band excitations are also

found to be well characterized by the DHO model.
The MDFs presume a broadening mechanism of Lorentzian type. If Gaussian broadening

is assumed, the dielectric function cannot be expressed as in a closed analytical form. However,
the substitution of the quantity

�∗ = � exp

[
−α

(
E − Eg

�

)2]
(14)

for � (γ ) in equations (5)–(12) leads to analytical functions which have been shown to closely
mimic the numerical results for the Gaussian case, for appropriate values of α [5, 25, 26].

By putting α = 0, the causality, linearity, reality and Kramers–Kronig requirements,
compulsory properties of ε(E), are satisfied automatically; however, this is not the case if
Gaussian-like broadening (α 	= 0) is assumed. This can be easily understood from a failure
in the causality of the dielectric response

ε1(E) = ε1(−E)

−ε2(E) = ε2(−E),
(15)

if one puts the Gaussian-like expression equation (14) into the MDFs or any arbitrary function
that can be used as a model dielectric function. The fact has been proved more clearly in
the optical dispersion analysis of amorphous semiconductors [27]. Thus, users of the MDFs
with equation (14) should be aware of this inconsistency and check self-consistency of the
dielectric function between the real and imaginary parts. In the following analysis, we assume
Lorentzian-type broadening (α = 0).

4. Results and discussion

The fits with our model to the experimental ε(E) spectra of c-ZnS are shown in figure 3.
The experimental data are taken from tabulation in [11]. They were compiled from [28] for
E � 0.07 eV, from [29] for 0.103 � E � 0.413 eV, from [30] for 0.516 � E � 2.754 eV,
from [31] for 2.75 � E � 5.4 eV and from [32] for 5.7 � E � 20 eV.

Below the reststrahlen range in optical spectra (E < 0.03 eV), the real part of the
dielectric constant asymptotically approaches the static or low-frequency dielectric constant
εs . The optical constant concerning the reststrahlen–near-infrared range is called the high-
frequency or optical dielectric constant ε∞. The high-frequency dielectric constant, thus, is
measured for frequencies well above the long-wavelength optical phonon frequency but below
the fundamental absorption edge.

The complex dielectric function ε(E) in the long-wavelength limit can be generally
explained by a classical Lorentz oscillator model [9]

ε(ω) = ε∞
(

1 +
ω2

LO − ω2
TO

ω2
TO − ω2 − iωγT

)
, (16)

where ωLO and ωTO are the transverse optical (TO) and longitudinal optical (LO) phonon
frequencies, respectively, and γT is the damping constant of the optical phonons. Note that the
optical dielectric contribution ε∞ in equation (16) mainly arises from the interband transitions
described in section 3. In order to avoid an overaccounting of this contribution, we express
the reststrahlen contribution to ε(E) as

ε(ω) = ε∞(ω2
LO − ω2

TO)

ω2
TO − ω2 − iωγT

= S

ω2
TO − ω2 − iωγT

, (17)

where S ≡ ε∞(ω2
LO − ω2

TO) is the reststrahlen-band strength parameter.
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Figure 3. MDF fit to ε(E) for c-ZnS. The solid curves are obtained from the sum of equations (5),
(8)–(10), (12) and (17) and ε1∞. The experimental data are taken from [11]. The fit-determined
MDF parameters are listed in table 1. The vertical arrows indicate the positions of several interband
transitions and d-band excitations in c-ZnS.

The solid curves in figure 3 are obtained from the sum of equations (5), (8)–(10), (12)
and (17). The best-fit parameters are listed in table 1. The experimental ε1(E) are usually
somewhat larger than our calculation model. In order to improve the fit, therefore, we
considered an addition term, ε1∞, to ε1. This term is assumed to be constant and may arise
from higher-energy excitations (e.g. core excitons).

The MDF requires three fitting parameters (CP energy, strength and broadening
parameters) per CP. The CP energies determined here are in reasonable agreement with those
reported in [33]. The 3D-exciton Rydberg energy G0 reported for c-ZnS varies from 34
to 39 meV [34–37]. We used a value of G0 = 34 meV [35, 37]. Neither experimental nor
theoretical value on the 2D-exciton Rydberg parameter G1 has been reported for c-ZnS to date.
The 3D and 2D Rydberg values reported for ZnTe are G0 ∼ 10 meV and G1 ∼ 47.5 meV,
respectively [38]. Keeping the ratio G1/G0 = 4.75 and inserting a value of G0 ∼ 34 meV,
we obtain G1 value for c-ZnS to be ∼162 meV.

Using such MDF parameters, we can obtain reasonable agreement between the MDF-
calculated and experimental ε2(E) spectra over the entire range of photon energies (figure 3(b)).
We must note, however, that the calculated ε1(E) spectrum shows no good agreement with
the experimental data in the 6–8 eV spectral region. The data in this region were deduced
from fundamental reflectivity by performing KK analysis [32]. The experimental ε1 and ε2

spectra must satisfy the KK self-consistency. As mentioned before, our MDF fully satisfies
the KK requirements. Thus, if the experimental ε2(E) spectrum agrees satisfactorily well with
the MDF-calculated spectrum, as in figure 3(b), then the same agreement must be achieved
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Table 1. Parameter values used in the calculation of ε(E) for c-ZnS.

Parameter Value

ωTO (cm−1) 281
S (105 cm−2) 2.56
γT (cm−1) 6.8
E0 (eV) 3.77
E0 + �0 (eV) 3.84
A (eV1.5) 35.5
� (eV) 0.12
G0 (eV) 0.034
A0x (eV2) 0.80
� (eV) 0.12
E1 (eV) 6.43
B1 0.25
� (eV) 0.44
G1 (eV) 0.162
B1x (eV2) 37.0
� (eV) 0.44
E2 (eV) 6.99
C 0.29
γ (eV) 0.05
E2 + δ (eV) 7.36
C 0.18
γ 0.06
E ′

0 (eV) 7.86
C 0.13
γ 0.09
E ′

1 (eV) 9.34
C 0.44
γ 0.15
d band (eV) 13.2
C 0.10
γ 0.15
ε1∞ 0.39

between the experimental and MDF-calculated ε1(E) spectra. It is, thus, considered that the
experimental ε(E) values in the 6–8 eV spectral region are doubtful. It is not easy to accurately
measure the reflectivity spectrum. Small differences in reflectivity can result in large difference
in ε. Further, ε values from reflectivity measurements are based on an indirect determination
technique with several assumptions and approximations.

The energy-loss function defined by − Im ε(E)−1 involves both one-electron excitations
and many-body resonances, such as excitons or plasmons. This is illustrated in figure 4
where the experimental Im ε(E) = ε2(E) and − Im ε(E)−1 are plotted by solid and open
circles, respectively. The solid curves indicate the MDF-calculated Im ε(E) and − Im ε(E)−1

spectra. Most of the structures observed below ∼10 eV in Im ε(E) and − Im ε(E)−1 are due
to the interband transitions. The structure at ∼12–13 eV is due to the d-band excitations (i.e.,
transitions from the Zn 3d band into the conduction band). This structure can be characterized
well by the DHO (figure 3). Around 20 eV a further structure is observed as a broad peak in
the energy-loss spectrum − Im ε(E)−1. In this so-called plasma region the valence electrons
can behave like free particles and take part in collective oscillations.
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Figure 4. Experimental Im ε(E) = ε2(E) and − Im ε(E)−1 spectra for c-ZnS. The solid curves
represent the MDF-calculated Im ε(E) and − Im ε(E)−1 spectra. The vertical arrows indicate the
positions of several interband transitions and d-band excitations in c-ZnS. The positions of the TO
and LO phonon frequencies are also indicated by ωTO and ωLO, respectively.

In the reststrahlen region, the loss function − Im ε(E)−1 and Im ε(E) can be given by

− Im ε(ω)−1 = (ε−1∞ − ε−1
s )ω2

LOωγT

(ω2
LO − ω2)2 + ω2γ 2

T

, (18a)

Im ε(ω) = (εs − ε∞)ω2
TOωγT

(ω2
TO − ω2)2 + ω2γ 2

T

, (18b)

which become for ω ∼ ωLO and ω ∼ ωTO

− Im ε(ω)−1 = (ε−1∞ − ε−1
s )ωLOγT

4(ωLO − ω)2 + γ 2
T

, (19a)

Im ε(ω) = (εs − ε∞)ωTOγT

4(ωTO − ω)2 + γ 2
T

. (19b)

Hence, the maxima in − Im ε(ω)−1 and Im ε(E) determine the optical phonon frequencies ωLO

and ωTO, respectively, as demonstrated in figure 4. The optical phonon frequencies determined
in figure 4 are ωLO = 352 cm−1 and ωTO = 281 cm−1.

A number of useful relations can be derived which relate the real and imaginary parts
of the dielectric function and optical constants [13]. The so-called dispersion relations and
sum rules have been extremely valuable in analysing and testing optical-constant data. Let us
consider the following sum rules [10]:

neff = 2πmε0

Ne2h2

∫ EM

0
Eε2(E) dE, (20)

ε1(0)eff = 1 +
2

π

∫ EM

0

ε2(E)

E
dE, (21)

where N is the number of atoms per m3. Figures 5(a) and (b) plot neff and ε1(0)eff versus
EM for c-ZnS, respectively. For comparison, those for ZnSe, ZnTe and Si are plotted. The
numerical ε2(E) values for these semiconductors are taken from [11].

Equation (20) relates neff , the effective number of valence electrons per atom taking
part in optical transitions in the range of photon energies up to EM , to ε2(E). If transitions
involving the valence electrons are well separated in energy from absorption associated with
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Figure 5. (a) neff and (b) ε1(0)eff for c-ZnS. For comparison, those for ZnSe, ZnTe and Si are also
plotted. The numerical ε2(E) values used in the calculations for these semiconductors are taken
from tabulation in [11].

core electrons, then this integral should behave in a very obvious way. For example, in the
tetrahedrally bonded materials the number of valence electrons per atom is four, irrespective
of the nature of bonding, and thus neff will approach a value of four at sufficiently large photon
energy. The plot of Si is just the case for this. By contrast, neff values for Zn chalcogenides
extend appreciably above four. The increase above four is due to the d-band excitations (i.e.,
real transitions between the filled Zn 3d states, lying below the valence band, and empty
conduction band). The d-band state is absent in Si.

Equation (20) predicts further increase in neff when EM approaches the d-band excitations.
If the cation d band is sufficiently well separated from the anion p band, neff will saturate at a
value of nine electrons per atom for EM such that the f-sum for the cation d band is exhausted.
This is not the case in the Zn chalcogenides. The EM values at which neff values get beyond
four are 20.5, 15.5 and 11.7 eV for c-ZnS, ZnSe and ZnTe, respectively. We can, therefore,
suppose stronger p (anion)–d (Zn) hybridization occurring in ZnTe than in c-ZnS.

From the tendency toward saturation for ε1(0)eff at photon energies below ∼10 eV, it is
evident that strong interband transitions below this energy are mainly responsible for the value
of the optical dielectric constant. In crystalline material, the real part of the dielectric function
ε1(0)eff approaches the optical dielectric constant, ε∞, as EM → ∞ eV. Measurements of
the optical dielectric constant ε∞ for c-ZnS have yielded widely different values ranging from
4.7 to 5.7 (see [28, 39–41]; table 2). The curves in figure 5(b) saturate at a value of ε∞ ∼ 5.1
for c-ZnS, ∼6.3 for ZnSe, ∼8.3 for ZnTe and ∼11.8 for Si. The c-ZnS value obtained here
is exact agreement with the average value of the literature data (∼5.1, table 2). The εs and
ε∞ are related to the optical phonon frequencies, ωLO and ωTO, by the generalized Lyddane–
Sachs–Teller relation

εs

ε∞
=

(
ωLO

ωTO

)2

. (22)

Introducing ωLO = 352 cm−1, ωTO = 281 cm−1, and ε∞ = 5.1 into equation (22), we obtain
8.0 for the value of εs .
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Figure 6. MDF-calculated n(E) and k(E) spectra for c-ZnS. The solid curves are obtained from
equation (23) for n(E) and from equation (24) for k(E), respectively. The open circles show
the experimental data taken from tabulation in [11]. The vertical arrows indicate the positions
of several interband transitions and d-band excitations in c-ZnS. The positions of the TO and LO
phonon frequencies are also indicated by ωTO and ωLO, respectively.

Table 2. Static (εs) and high-frequency dielectric constants (ε∞) of c-ZnS.

εs ε∞ T (K) References

8.9 5.7 300 [28]
8.14 77 [39]
8.37 298 [39]
8.04 4.9 2 [40]
8.10 4.8 80 [40]
8.34 4.7 300 [40]
8.1 75.6 [41]
8.3 5.20 300 [41]
8.0 5.1 300 Present study

Optical spectra, such as the complex refractive index n∗(E) = n(E) + ik(E), absorption
coefficient α(E) and normal-incidence reflectivity R(E), can be calculated from the present
study, since they are directly related to the complex dielectric function ε(E). The real refractive
index n(E) and extinction coefficient k(E) can now be written as

n(E) =
(

[ε1(E)2 + ε2(E)2]1/2 + ε1(E)

2

)1/2

, (23)
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∆
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Figure 7. MDF-calculated α(E) and R(E) spectra for c-ZnS. The solid curves are obtained from
equation (25) for α(E) and from equation (26) for R(E), respectively. The open circles show
the experimental data taken from tabulation in [11]. The vertical arrows indicate the positions
of several interband transitions and d-band excitations in c-ZnS. The positions of the TO and LO
phonon frequencies are also indicated by ωTO and ωLO, respectively.

k(E) =
(

[ε1(E)2 + ε2(E)2]1/2 − ε1(E)

2

)1/2

. (24)

The MDF-calculated n(E) and k(E) spectra for c-ZnS are shown in figure 6. The solid curves
are obtained from equations (23) and (24). The open circles represent the experimental data.
The strong peaks seen in n at E ∼ 3–10 eV correspond to the E0, E1, E2 and E ′

1 transitions.
The peak due to the d-band excitations is also clearly found at E ∼ 13 eV. In the reststrahlen
region (E < 0.1 eV), the refractive index is determined to be n∞ ∼ (ε∞)1/2 ∼ 2.2. For k(E),
the strongest peak at E ∼ 7 eV is related mainly to the E2 and E2 + δ transitions. The k above
∼3.8 eV is associated with the onset of the E0/(E0 + �0)-gap 3D-exciton transitions and that
at E ∼ 6 eV is dominated by the 2D-exciton (E1) transitions.

The absorption coefficient α(E) and normal-incidence reflectivity R(E) can be given by

α(E) = 4π

λ
k(E), (25)

R(E) = [n(E) − 1]2 + k(E)2

[n(E) + 1]2 + k(E)2
, (26)

where λ is the light wavelength in the vacuum.
The MDF-calculated α(E) and R(E) spectra for c-ZnS are shown in figure 7. The

solid lines show the calculated results of equations (25) and (26) with n(E) and k(E) from
equations (23) and (24), respectively. The open circles represent the experimental data taken
from [11]. In figure 7(a), α(E) shows a saturated value of ∼1 × 106 cm−1 at E > 6 eV. The
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reststrahlen α peak value is about 3 ×104 cm−1 at E ∼ 0.035 eV. The R(E) spectrum reveals
the various CPs and d-band excitations in the spectrum. It is evident from figures 6 and 7 that
our MDF calculation reproduces the peculiar optical-constant spectra of c-ZnS over the entire
range of photon energies (0–20 eV).

5. Conclusions

We have analysed the real (ε1) and imaginary parts (ε2) of the complex dielectric function
of c-ZnS in the 0–20 eV photon-energy range. The analysed ε(E) spectra reveal the lattice
absorption band, distinct CP structures and cation core-level excitations in the spectra. These
data are analysed using a classical harmonic oscillator and a simplified interband transition
model. The band-structure calculation is also performed to assign such optical transitions
to specific points in the Brillouin zone. Excellent agreement is achieved between the MDF-
calculated and experimental ε(E) spectra over the entire range of photon energies. Dielectric-
related optical constants, such as the complex refractive index, absorption coefficient and
normal-incidence reflectivity, of c-ZnS have also been presented.
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